Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.
نویسندگان
چکیده
Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization.
منابع مشابه
Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform.
We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quar...
متن کاملHuman cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer
Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic-co-glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI) wa...
متن کاملProgrammed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane.
Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with...
متن کاملErythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release.
AIM Polymeric nanoparticles (NPs) cloaked by red blood cell membrane (RBCm) confer the combined advantage of both long circulation lifetime and controlled drug release. The authors carried out studies to gain a better understanding of the drug loading, drug-release kinetics and cell-based efficacy of RBCm-cloaked NPs. MATERIALS & METHODS Two strategies for loading doxorubicin into the RBCm-cl...
متن کاملPreparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy
Cancer is one of the leading causes of death worldwide. Many treatments have been developed so far, although effective, suffer from severe side effects due to low selectivity. Nanoparticles can improve the therapeutic index of their delivered drugs by specifically transporting them to tumors. However, their exogenous nature usually leads to fast clearance by mononuclear phagocytic system. Recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 27 شماره
صفحات -
تاریخ انتشار 2011